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1.      INTRODUCTION 

At the Harry Diamond Laboratories (HDL) magnetic signature facility at Aberdeen. MD, magnetic 
signatures of tanks are determined by measuring the field in a plane under the tank at points spaced 1 ft 
apart in a 20 x 40 ft square grid (J.I. Cooperman and T. H. Hopp, unpublished report). Forty-one readings 
are taken (one for each foot) as the tank advances over a linear array of 21 magnetometers. The problem 
treated here is how best to correlate different sets of measurements to eliminate statistical uncertainties in 
the measurement. In a given run, the tank may take a path that is slightly shifted with respect to its pre- 
vious run, and the process of recording readings on the magnetometers for every foot of travel of the tank 
across the linear array may have begun at a slightly different time. One cannot, therefore, simply compare 
the output of corresponding magnetometers and treat the problem by the usual statistical methods. There 
are good reasons, owing to the small shifts described above, that corresponding magnetometers should not 
give the same reading during different runs. 

A second problem related to these measurements is sorting out the tank's distortion of the earth's 
magnetic field from the larger residual field of the tank. The latter is easily measured by bucking out the 
earth's field with large Helmholtz coils existing at the site, but the former must be inferred by comparing 
these measurements with similar measurements when the earth's field is not bucked out. Shifts similar to 
those described above must again be considered when one compares these measurements. 

Both problems are treated here in a unified manner by considering the question, "What can be said 
about a function of two variables if it is sampled only at a finite number of points in a square grid covering 
a given area?" This problem is solved by expanding the matrix of measurements in a discrete Fourier series 
with the largest number of low-frequency components that can uniquely be determined from the measure- 
ments. This expansion provides a natural and uncontrived extension of the function continuously and 
smoothly to any point within the area. By comparing the functions generated in this manner from two 
separate runs, one may then continuously shift the functions with respect to each other to obtain a best 
fit. In this way. an analytic determination of the previously unknown shifts between the two runs is ob- 
tained, and systematic errors are eliminated that result when such shifts are ignored. Assuming the shifts to 
be small compared with the 1-ft spacings between data points, a closed expression for the shifts is obtained. 
Larger shifts may be determined by using well-known computer methods for minimizing the explicit ex- 
pression derived for the square deviation between the functions. 

The second problem may be treated similarly by comparing the two runs with and without the earth's 
field bucked out, except there is a question as to how the comparison should be made. One can only 
assume that the correlation between the tank's residual field and its distortion of the earth's field is small 
(if not zero) compared with its self correlation, so also a best fit between the shifted functions representing 
the two runs should be required in this case.* The remaining field after the best fit is subtracted is then the 
distorted earth's field, provided it may be assumed also that the magnetic behavior of the tank is linear for 
field strengths considered in these experiments. Although the formalism developed in this report may be 
useful in considering possible nonlinear effects, th^s problem is not treated here. 

In formulating the mathematics to handle the problem discussed above, the larger question has been 
answered of determining a function of two variables by sampling at a discrete number of points in a regular 
grid. The methods in this report therefore more generally apply. 

"In a private communication, T. H. Hopp of HDL suggests that there is reason to believe the distorted earth's field 
has a component that correlates in phase with the tank's residual field. This correlation provides even stronger justification 
for requiring a best-fit match. 



2.      DISCRETE FOURIER EXPANSION 

Let a sequence of readings on N detectors taken at M equal time or space intervals be stored in an 
NXM array A, where A(pq) is the ql reading of the pl detector. For convenience, start the numbering at 
zero so that 

0<p<N-l , (la) 

0<q<M- 1 . (lb) 

In this problem, A(uv) is a function of two variables, u and v, known only at integer values of its arguments 
over the finite ranges given above. To approximate the function for arbitrary uv, A(pq) is expanded in 
finite, discrete Fourier series and then generalized. 

Define the Fourier components in the expansion of A by 

N-l M-l .27T ,27T 

A(Pq)=l   1   e e M       anm (2) nm 
n=0 m = 0 

where, from 

I5 = N5nn'> (3) 
p = 0 

expression (2) may be inverted to give 

N-l M-l    ill \ll 

\m = (NM)      i   1 e e A(pq) . (4) 
p=0 q=0 

To be consistent with this expansion, it is assumed that for p and q outside the ranges given by expressions 
(la) and (lb), A is defined by 

A(p + N, q) = A(pq) = A(p, q + M) . (5) 

Henceforth, it is assumed also that the implied summations in Sp and 2q, respectively, extend over the 
ranges given by expressions (la) and (lb) and similarly in 2n and Zm, unless otherwise noted. Now define 
the extension of A to arbitrary uv by substituting p = u and q = v in expression (2) and using the definition 
of anm given by expression (4). Thus, 

-i   V        . ,   V    'T?(u " P')n   '1S"(V - q')m 

A(uv) = (NM)  '   !  A(p'q') 2.  e N e M 

p q nm 

= e
i7r(u + v)  I  A(p'q') CN (p'; - u) CM (q', - v) (6) 

p'q' 



where 

: N     sin n/. 
2ir,        . 

cot — (p + z) + 1 

(7a) 

(7b) 

The CN functions are a convenient form for evaluating the summations needed later. In appendix A. sums 
over products of cotangents are discussed, and results are given from which useful properties of the CN can 
be derived. These properties of the CN are given in appendix B. 

From expression (6), it is clear that A(uv) is not necessarily real for noninteger u and v. Therefore, 
define R(uv). the extention of A(pq) to noninteger arguments, as the real part of expression (6), to give 

R(uv) = (NM)    sin rru sin TTV J_  A(p'q') 

p t 

cos *&-&)"+£+ ('-M)
V

 
+
 ^I (8) 

sin — (p - u) sin— (q      v) 

where this expression has been obtained by substituting expression (7a) for the CN. Letting u = p + x/2, 
v = q + y/2, the following expression results: 

R(p + x/2, q + y/2) = (NM)"1 sin-y sin-y   X A(p'q') 

E\     p'-p     x/2     y     q' 
- + + —+ — 
?               N 2 

M    y/2 

p q sin —(p       p-x/2) sin—(q      q     y/2) 
N M 

•  (9) 

This form is convenient for examining the relationship of R to A for small deviations x,y. As x and y ap- 
proach zero, R(pq) •* A(pq). 

Similarly, if S is the analogous extension of a second set of measurements stored in an array B(pq), 
then the two extensions R and S may be compared by shifting S in the opposite direction and minimizing 
their square deviation. In this way, the two sets of measurements A and B are on equal footing. Thus, 
define 

Q(x,y) = (NM)- X   [R(p + x/2. 
pq    L 

q + y/2)-S(p-x/2,q-y/2) (10) 

where S is given by letting x and y go to -x and-y and substituting B for A in expression (9). Carrying out 
the algebra according to the cotangent sums in appendix A (or more simply, the CN relationships given in 
appendix B), one gets 

CXx.y) = [1 + cos TT(X + y)]Qj+ [cos Try - cos rr(x + y)]Q, 

+ [cos rrx- cos 7r(x + y)] Q3 + [1 + cos TT(X + y)- cos TTX- cos Try] Q4 

- [1 + cos TT(X + y)[ sin 7ix sin rry Q5(x,y) 

- [1 - cos rrx + sin 7rx sin TT(X + y)] sin wy Q6(y) 

- [ 1 - cos wy + sin rry sin 7r(x + y)] sin vx Q7(x) 

- [(1 - cos wxXl - cos rry)- sin TTX sin Try cos TT(X + y)] Q„ 



where 

Q,=3(NM)"'      ^    [A2(pq)+B2(pq)J, (12a) 

Q74N-2M-'      X     rA(pq)A(p'q) + B(pq)B(p'q) 1, (12b) 
pp q  L J 

03 = \ N"' M-2      X ,   rA(pq)A(pq') + B(pq)B(pq')l , (12c) 
1 pqq    L J 

Q4=±(A
2
 + B

2
), (12d) 

Q   (x,y)=(NM)"'      I    cotI(p_x)cot£(q_y)p(pq), (i2e) 
3 pq N M 

Q,(y)=(NM)"1     S   cotjj(q-y)     £P(pq), (120 b q M p 

Q7(x)=(NM)_1    I    cot^(p-x)    IP(pq), (12g) 

and where 

Q8=AB, (12h) 

A=(NM)"'    X    A(Pq), (13) 
pq 

and the correlation matrix P is defined by 

P(pq)=(NM)''       ^-,    A(p'q') B(p'+ p. q'+ q) . (14) 
p q 

In principle, the problem is now straightforward. Expression (11) must be minimized with respect to x and 
y—say this occurs at x = x0, y = y0; then the most probable function F (given the two sets of measure- 
ments) is 

F(uv) = ^|R(u + xo/2,v + yo/2)   + S(u - XQ/2, v - yo/2)l (15) 

with an rms deviation a given by 

» = [«*„*.>] 06, 

Minimizing Q(xy) may be a formidable task even for a computer if N and M are of appreciable size; so 
the problem, although well defined, is not necessarily satisfactorily solved at this stage. In addition, there 
may be several sets of measurements, in which case the procedure outlined above must be performed several 
times and the results somehow correlated. In the following section, the case is treated where x0 and y0 may 
be assumed small in comparison with unity. Then the quantities of interest may all be expanded for small 
xy, resulting in a considerable simplification of the problem. 



Expressions for x0 and y0 are given for obtaining these quantities by direct calculation, and no com- 
puter minimization procedure is required. 

By use of this procedure, the problem of treating more than two sets of measurements is no longer 
formidable. A method for correlating several sets of measurements to obtain the most probable function 
F(uv) is described in section 4. The method treats equally each set of measurements and generates a set of 
standard deviations for the shifts by which one may estimate the errors in the measurements and the degree 
to which the resultant function F is meaningful. 

3.      RESULTS FOR SMALL DEVIATIONS 

If the deviations between two sets of measurements are small, then one may expand the results of the 
previous section for small x,y and analytically minimize Q(xy). This may be a good preliminary calculation, 
in any event, even if the deviations are not known to be small or cannot be assumed to be small, since the 
resultant xQ, yo may be used as starting values to minimize the full expression for Q given by expression 
(11). 

Expanding expression (11) to second order in x and y, one obtains 

Q(xy)=   X     knm (TTX)" (rry)"1 (17) 

where 

mil 

pq 
A(pq)-~B(pq) 

N-l 

k20--7kO0+IQ2 + 3,(1+^)P<00>-fN"1   ?   P(P0) 

k
02 

(18a) 

k.n = -2N   l   Z     cot^P(pO), (18b) 
'10 P=l 

Ml 

kn, = -2M~ l    T     cot 12 P(Oq) , (18c) 
ul q=l M 

±     I       1+cot2^   P(pO), (18d) 
N       p=1     L J 

4k00 + 2Q3+3(1 + ~2)
P(00)-2M'1   £   P(0^ 

Ml 

t—     I    ri+cot2-^]p(0q), (18e) 
M

2
   q=i  L MJ 



kll =-|k00 + Q2 + Q3 --^(A-B) 
2-NJ Z    P(pO)-M-1I    P(Oq) 

N-l        M-l 

^(NM)"1      X        I    cot^cot^P(pq), (180 
p=l q=l M 

and where Q2 and Q3 are given by expressions (12b) and (12c) and P(pq) is defined by expression (14). 

Differentiating expression (17) with respect to x and y and separately setting the results equal to zero 
give the solutions 

xcr »'! (ki ikoi - 2kioko2J / (4k2oko2 - kl l) <19a) 

y0 
= 'r"1 (knkio -2koik2o) / (4k20k02-kn) • <1%) 

Thus, by direct calculation, we have determined the xQ,y0 that minimize Q. If the resultant values are less 
than 0.16 (irx < 0.5), the sine and cosine expansions used to obtain these results approximate the true 
values to within 1 percent, so the values for xQ, yQ calculated by this method may be assumed accurate. In 
the limiting case in which A and B are equal, it can be shown that k. Q and kQ, vanish, so x and y are zero 
as required. 

The expansion for R for small x, y is 

R(p + x/2,q + y/2)^A(pq) 

-fs) ? *»'<»<»<£<•"'-P>HS) $'*0-fitf-« 
-A(pq,jl(S)2(N^,.,I(S)2

(M^1)+i[(N-1,^+(M-„2]2j 

+ S  ^A**fM-*gt§.-i--.»jtf-<)]g] 

+S g     I",   *">  k«3<P' - P)».i(,' - ,) - l] (20) 
p q L J 

where 2 > means the p' = p is excluded from the sum; the same holds for q. This expression may not be 
much simpler to evaluate than the rigorous expression (9), unless xQ and yQ are sufficiently small so the 
quadratic terms may be ignored. In this case, 

• <M-i)g 

10 



F(pq)=T   A(pq)+B(pq) jUpqJ+Blpq)] 

^   [A(p'q)    B(p'q)]cot£(p'-p) 

— ^    [A(pq ) - B(pq )J cot - (q   - q) . (21) 

4 

The rms deviation between the shitted functions from expressions (16) and (17) is given by 

1/2 

„5knn,   (**<)) Vo)"] (22) 

CORRELATION OF SEVERAL MEASUREMENT SETS 

Suppose there are K sets of measurements A,(pq) where 

Ki<K (23) 

and each set is shitted by some unknown amount from its presumably true set of values according to the 
discussion in the previous sections. Let the vector quantity r represent the pair of values x-,y . where 
these are the shifts calculated to minimize the difference between A and A:. That is, the minimum square 
deviation between A and A obtains for the extended version of A ,R:. evaluated at 

Rj(p+ 5^/2^ + ^/2) (24) 

and for the extended version of A.,R., evaluated at 

R.(P-x..l2.q-y../2). (25) 

Then, clearly 

r-r,,. (26) 

Now, suppose the centroid of all the measurements is designated by the subscript zero, and i (|, foi ex- 
ample, is the shift that must be given to A- to bring it into line with the centroid. Then 

I   'i0 = ° <27> 
is the vector criterion for the centroid. To solve for a given r„, it is clear that, ideally. 

Thus expression (27) becomes 

ri0 = rij + rjo • <28> 

rjo+     \.     ri0 

•*»• £ ',-o 



or 

r-n-K'1    I   r„ (29) 'jo    -      ^   'Jl 

by use of expression (26). These r.„ satisfy expression (27), even though expression (28) may not be 
strictly correct. It must be stressed that expression (28) is rigorously correct only if the shifted matrices 
represent the true function that would be measured at the shifted position and no errors existed in the 
measurements. This assumption, of course, is only approximately correct. 

Similarly, although each calculated r.. ideally should equal r + I . for any n, taking r.. = 0 for all i, 
errors in the measurements and in the extended functions prevent this equality from being exact. Devia- 
tions from equality therefore give some measure of these errors. Accordingly, define o-(x) by 

•„tt-(M"! ?[x.r(x.n + s)]2} 
1/2 

(30) 

and define oJy) similarly. 

Practice will determine how useful the a., are, but it is clear that if o.j(x) is not small compared with 
Ix.l, then either some set of measurements that contributed most to the magnitude of a..(x) should be cast 
out or the whole procedure of shifting sets of data is questionable for the given data. If the a., are reason- 
ably small, however, then 

FOHO-K"
1
   I   Rj(" + xj0,v + yjo) (31) 

is the best extension of the data where the rj0 are given by expression (29). For the case of two sets of 
measurements (K = 2), expression (31) reduces to expression (15) derived in section 2. 
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APPENDIX A.  COTANGENT SUMS 

From E.T. Whittaker and G.N. Watson, A Course of Modern Analysis, (4th ed., Cambridge University 
Press, 1958, p. 140, sect. 7.7, example 1), 

K K 
n7t .      .      v      n        ",        \      n/       ,        TK (A-i) COt N (P - a>) =   i,        H    COt lif- - 3.) COt N(P     

8m)  + « T 

one may sum over 0 < p < N — 1 to give 

iricot^p-a^-N     S     .^   cotI(am-a)cotffam + Ncosf (A-2) 

where one assumes a   =£ a    for n # m anJ no a    is an integer. If some of the a    are integers, the limits of n        m m ° m ° 
expression (A-2) as each approaches its integer value give 

I'ri»>5(p-^=-N I H »,!(.,„-.,)«,,„,„ 

+ 

where 2'   extends over 0 < p < N — 1 excluding integers modN (aj for integer am, where mod^ ^a\^ 

modN /a   \ for n =£ m, where v extends over the noninteger a   , and where v extends over the integer am. 
m 

From expressions (A-2) and (A-3), then, for K = 1, 

X cotT;(p _ a) = - N cot 7ra , (A-4a) 

I       cot|(p-p) =0. (A-4b) 

and for K = 2, where aj i= a, ¥= integer, Pj =£ p2, 

A   cot -\p - aj ) cot- /p - a2"\ = - N-N cot— (a,     a-,\    cot TTaj - cot rraJ   ,    (A-5a) 

p5p   
COt £ (P - Pi)  cot N (P - a

2) = - N + N cot * (p, - a2) cot 7ra2 + 1 + cot2 J (p,     a,)  . (A-5b) 

P*P>2   "^NfP " Pi) COt ^(P - P2) -N + 2 [, + cot2 f(p, - p2)] . (A-5C) 

L3 



APPENDIX A 

Differentiating expression (A-4a) with respect to "a," one may generate 

K 

P 
cot SM y.) 

where f satisfies 

with 

f       --f        +-Nf 
!K+1        'K-J    

+
KnfK 

f0 = N; fj = - N cot ira 

(A-6) 

(A-7) 

(A-8) 

and f' = df/da. Thus, solving expression (A-7) for K = 1, 

7. cot 5M N + N- 1 + cot 7ra 

for example. Limiting expression (A-9a) as a -»• p, gives 

Pip1[
C0t^-pi)]2 i(N-lXN-2). 

Thus, the generalization of expression (A-5c) is 

P^p 

i
COtNff(P^P0C°t^(P^P2)=-N + 2(1-5P1P2) 

2 7T  / . 
1+cot -(Pi-P2) 

+ ^(N2+2)( 
PlP2 

(A-9a) 

(A-9b) 

(A-10) 

Expression (A-6) may be generalized by differentiating expression (A-2) qn times with respect to a 
for each n to develop a sum of the form 

p     m 

-19. 
= f 

By use of 

d . n i \ IT 
— cot—(p - a)=— 
da      NV      I   N 

the following recursion expression for the generalized f is obtained, 

(ar..ak). 

l+cot2^(p-a) 

(A-ll) 

(A-12) 

f ^ , = -f , N    d   f (A-13) 

14 



APPENDIX A 

where the boundary conditions for f if each q = 0 or 1 are obtained from expression (A-2).   A limiting 
procedure is taken to evaluate expression (A-ll) if some of the an are integers. The result for a given 
an = integer, say an = pn, is obtained by 

i n 
P#P n    n 

cot £(P - 3m) 

= hmVPn    f^-^-a"-a^0CO^(P«-a-) 
(A-14) 

Similarly, additional limits may be taken if several of the an are integers. Note that if pn> N - I. then let 
an* modN(pn^ , since f (an + N^ = f (an) independently for each an. 

ForK = 2, 

P 
cot^(p-ai)    ' coti(p-.2) "W^1*) (A-15) 

where 

and 

W^W'^O (A-16) 

foo = N;fio = -Ncot7rai • (A-17a) 

fn= -N-Ncot-^-a^ cot 7rat - cot 7ra2 (A-17b) 

f20 = -N + N 1 + cot   7ra (A-17c) 

9 ir 
f21 = - N rot 7ra2 cot — 

N(
3
1      

32) 

+ N 
cot n{ 

Ncot^(ai ~a2) 

;„2 7T 

r^(ai-a
2) sin 7ra. 

(A-I7d) 

f22 = N + 2Ncot-(ai-a2) 
cot 7ra, — cot 7ra2 

• 2 ir sin r: ̂(al-a2) 

2        2 7T 
+ N .cot i(al-a2) 

2 2 
2 + cot 7ra, + cot wa2 (A-17e) 
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APPENDIX B. - THE CN (p,z) FUNCTION 

In the form 

CN(p,z) = N      sin 7rz cot-(p + z) + i (B-l) 

the following properties of these functions may be derived from a limiting procedure of  he cotangent 
sums of appendix A: 

CN(P.°) = 6PO> (B-2) 

CN(p',P + z) = (-)pCN(p' + p,z) (B-3) 

C>,z) = CN(--p, -z) 

= CN(p^)- 2N   ' i sin TTZ 

I   CN(p,z)=   I   CN(-p,z)=   I   CN(p+p',z) = eiffz, 
P p p 

(B-4) 

(B-5) 

(B-6) 

Y   CN (P - P'- z) CN (P - pV) = CN (p" - p', z - z') , (B-7) 

I   CN (p - P', z)CN (P - P", z')= CN (P" - p',z - z') + 2iN^ ' eiffz sin nz' (B-8) 

CN (p' - p", z' - z) + 2iN' ' e17rz' sin TTZ (B-") 

17 
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